Pharmacological characterization of serotonergic receptor activity in the hypoglossal nucleus.
نویسندگان
چکیده
State-dependent reductions in serotonin delivery to upper airway dilator motoneuron activity may contribute to sleep apnea. The functional significance of serotonin receptor subtypes implicated in excitation of dilator motor neurons was evaluated in anesthetized, paralyzed, mechanically ventilated adult rats (n = 108). The effects of antagonists selective for serotonin receptor subtypes 2A, 2C, or 7 on intrinsic hypoglossal activity and on serotonin agonist (serotonin, 5-carboxamidotryptamine maleate, and RO-600175) dose responses were characterized. All drugs were injected unilaterally into the hypoglossal nucleus. The 2A antagonist, MDL-100907, dropped intrinsic hypoglossal nerve respiratory activity by 61 +/- 6% (p < 0.001) and suppressed serotonin excitation of hypoglossal nerve activity (p < 0.05). The 2C antagonist, SB-242084, dropped hypoglossal nerve activity 17 +/- 6% (p < 0.05) and suppressed the dose-response curve for the 2C agonist. Rapid desensitization occurred with the 2C agonist only (p < 0.05). The 7 antagonist, SB-269970, had no effect on either intrinsic activity or agonist responses. We conclude that serotonin 2A is the predominant excitatory serotonin receptor subtype at hypoglossal motor neurons. The serotonin 2C excitatory effects are of lower magnitude and are associated with rapid desensitization. There is no evidence for serotonin 7 activity in the hypoglossal nucleus. This characterization of serotonin receptor subtypes in the hypoglossal nucleus provides a focus for the development of pharmacotherapies for sleep apnea.
منابع مشابه
Revisiting Antagonist Effects in Hypoglossal Nucleus: Brainstem Circuit for the State-Dependent Control of Hypoglossal Motoneurons: A Hypothesis
We reassessed and provided new insights into the findings that were obtained in our previous experiments that employed the injections of combined adrenergic, serotonergic, GABAergic, and glycinergic antagonists into the hypoglossal nucleus in order to pharmacologically abolish the depression of hypoglossal nerve activity that occurred during carbachol-induced rapid-eye-movement (REM) sleep-like...
متن کاملElectrophysiological, pharmacological and behavioral studies of different physiological roles of the nucleus paragigantocellularis
The nucleus paragigantocellularis (PGI) is located in the rostral ventrolateral medulla and has noticeable connections with some other brain nuclei, such as locus ceruleus, nucleus raphe magnus and periaqueductal gray. In rats it is 3 mm in rostrocaudal and 1 mm in mediolateral and 1 mm in the dorsolateral aspect. Anatomically and functionally, PGI has been divided into two subnuclei, retrofaci...
متن کاملElectrophysiological, pharmacological and behavioral studies of different physiological roles of the nucleus paragigantocellularis
The nucleus paragigantocellularis (PGI) is located in the rostral ventrolateral medulla and has noticeable connections with some other brain nuclei, such as locus ceruleus, nucleus raphe magnus and periaqueductal gray. In rats it is 3 mm in rostrocaudal and 1 mm in mediolateral and 1 mm in the dorsolateral aspect. Anatomically and functionally, PGI has been divided into two subnuclei, retrofaci...
متن کاملAntagonism of alpha1-adrenergic and serotonergic receptors in the hypoglossal motor nucleus does not prevent motoneuronal activation elicited from the posterior hypothalamus.
The perifornical (PF) region of the posterior hypothalamus plays an important role in the regulation of sleep-wake states and motor activity. Disinhibition of PF neurons by the GABA(A) receptor antagonist, bicuculline, has been used to study the mechanisms of wake- and motor activity-promoting effects that emanate from the PF region. Bicuculline activates PF neurons, including the orexin-contai...
متن کاملLong-term intermittent hypoxia: reduced excitatory hypoglossal nerve output.
Humans with long-standing sleep apnea show mixed responses to serotonergic therapies for obstructive sleep apnea. We hypothesize that long-term intermittent hypoxia may result in oxidative injury to upper airway motoneurons, thereby diminishing serotonergic motoneuronal excitation. Unilateral serotonin and glutamate agonist and antagonist microinjections into the hypoglossal motor nuclei in adu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of respiratory and critical care medicine
دوره 167 4 شماره
صفحات -
تاریخ انتشار 2003